
A Fortran-90 Based Multiprecision System
David H. Bailey

RNR Technical Report RNR-94-013
January 6, 1995

Ref: ACM Trans. on Mathematical Software, vol. 21, no. 4 (Dec. 1995),
pg. 379{387

Abstract

The author has developed a new version of his Fortran multiprecision computation
system that is based on the Fortran-90 language. With this new approach, a translator
program is not required | translation of Fortran code for multiprecision is accomplished by
merely utilizing advanced features of Fortran-90, such as derived data types and operator
extensions. This approach results in more reliable translation and also permits program-
mers of multiprecision applications to utilize the full power of the Fortran-90 language.

Three multiprecision datatypes are supported in this system: multiprecision integer,
real and complex. All the usual Fortran conventions for mixed mode operations are sup-
ported, and many of the Fortran intrinsics, such as SIN, EXP and MOD, are supported with
multiprecision arguments.

This paper also briey describes an interesting application of this software, wherein new
number-theoretic identities have been discovered by means of multiprecision computations.

Author's address: NAS Scienti�c Computation Branch, NASA Ames Research Center,
Mail Stop T27A-1, Mo�ett Field, CA 94035-1000; dbailey@nas.nasa.gov.

1

1. Introduction

Readers may be familiar with the author's previous multiprecision system [3], which
consists of the TRANSMP translator program and the MPFUN package of multiprecision
(MP) computation routines. Together they permit one to write straightforward Fortran-77
code that can be executed using an arbitrarily high level of numeric precision.

From its inception, the TRANSMP program was intended only as an interim tool until
Fortran-90 was available. This is because advanced Fortran-90 features such as derived
data types and operator extensions permit one to implement multiprecision translation in
a much more natural way. Now that day has arrived | Fortran-90 is currently available on
several computer systems, and it soon will be available from all major vendors of scienti�c
computers. Accordingly, the author has written a set of Fortran-90 modules that permit
the user to handle MP data like any other Fortran data type.

With the new Fortran-90 based system, one declares variables to be of type MP integer,
MP real or MP complex using Fortran-90 type statements. With a few exceptions, one can
then write ordinary Fortran-90 code involving these variables. In particular, arithmetic
operations involving these variables are performed with a numeric precision level that can
be set to an arbitrarily high level. Also, most of the Fortran intrinsic functions, such as
SIN, EXP and MOD, are de�ned with MP arguments.

In comparison to the TRANSMP approach, there are a few disappointments. To begin
with, one has to give up the ability to run MP source code, without change, as a standard
single precision or double precision program. Also, features such as read/write statements
are not as elegant in the new system | subroutines must now be called for formatted MP
read and write.

On the other hand, features such as generic functions work much better in the Fortran-
90 version. Also, the coverage of Fortran features is more complete with the Fortran-90
version than with TRANSMP| programmers can now utilize the full power of the Fortran-
90 language in a MP application. Another important advantage of the Fortran-90 approach
is that a very reliable translation is produced, since the process of translation is performed
by the Fortran-90 compiler itself, rather than by the TRANSMP program.

This article gives an overview of this new software, including a brief summary of the
instructions for usage. It also describes an interesting application of this software to math-
ematical number theory, showing how MP calculations can be used to discover new math-
ematical identities.

This software is available by sending electronic mail to mp-request@nas.nasa.gov.
Include send index as either the subject line or the text of the �rst message to this
address. It is also available by using Mosaic software at the address
http://www.nas.nasa.gov/RNR/software.html.

2. The Fortran-90 MP Translation Modules

The new MP translator is a set of Fortran-90 modules. These translation modules
serve as a link between the user's program and MPFUN, the library of MP computation
routines. To utilize the MP translation facility, one inserts the following line in the main

2

program of the user's application code, as well as in any subprogram that performs MP
operations:

USE MPMODULE

This line must be placed after the PROGRAM, SUBROUTINE, FUNCTION or MODULE statement,
but before any implicit or type statements. This USE statement connects the subprogram
with the Fortran-90 translation modules that de�ne the MP datatypes and operator ex-
tensions.

At the beginning of the executable portion of the user's main program, even if the main
program itself performs no MP operations, one inserts the line

CALL MPINIT

The routine MPINIT sets MPFUN library parameters, such as the precision level, and
precomputes constants needed in transcendental function routines (see section four).

Three derived types are de�ned in the translation modules: MP INTEGER, MP REAL and
MP COMPLEX. In an application program, one may explicitly specify MP variables using
Fortran-90 type statements, such as

TYPE (MP_INTEGER) IA, IB, IC

TYPE (MP_REAL) A, B, C, D, E

TYPE (MP_COMPLEX) Z

Alternatively, one may implicitly declare variables to be of one of the three MP types by
using an IMPLICIT statement, such as

IMPLICIT TYPE (MP_REAL) (A-H, O-Z)

MP constants are handled a bit di�erently than with TRANSMP. These are now spec-
i�ed as literal constants, i.e. '1.23456789'. One may directly assign a MP constant to a
MP variable, but if a MP constant appears in an expression, it must be as the argument
to MPINT, MPREAL or MPCMPL, depending on whether it to be treated as MP integer, MP
real or MP complex. Examples:

IA = '333333333333333333333333333'

A = '1.4142135623 7309504880 168872420 E-10'

B = MPREAL ('1.25') / N

Z = 2 * MPCMPL ('1.2345', '6.7890')

Note that without the quotes to indicate an MP constant, the integer constant in the �rst
line would overow, and the oating constant in the second line would not be converted
with full MP accuracy.

Quotes are not really required in the third line, since 1.25 can be converted exactly with
ordinary arithmetic. However, note that simply writing B = 1.25 / N would not give a

3

fully accurate result if, for example, N is an ordinary integer with the value 7 (although it
would be �ne if N is 8). This is because the division operation would be performed using
ordinary single precision arithmetic, and the inaccurate result would then be converted
to MP and stored in B. The usage of the function MPREAL in the third line insures that
the division is performed with MP arithmetic. This is an example of the care one must
exercise in programming to insure that intermediate calculations are performed with MP
arithmetic when required. In this respect, the new Fortran-90 translation system is like
the FAST option of the TRANSMP program.

The expressions in lines three and four are examples of mixed mode operations. Vir-
tually all such operations are allowed, and the result is of the type that one would expect.
For example, the product of a MP real variable and an integer constant is of type MP real,
and the sum of a complex variable and a MP real variable is of type MP complex. The
only combinations that are not currently allowed are some exponentiations involving MP
complex entities | these are de�ned only when the exponent is an integer.

Unformatted read and write statements with MP variables in the I/O list, such as
WRITE (11) A, B, are handled as expected. But formatted and list-directed read and
write statements, i.e. WRITE (6, *) A, B, will not produce the expected results for MP
variables. These operations must now be handled using the special subroutines MPREAD

and MPWRITE. The �rst argument of either routine is the unit number. Arguments 2-10
are the list of MP variables to be input or output. Within a single call to either routine,
the MP variables in the list must all be the same type, either MP integer, MP real or MP
complex. Examples:

CALL MPREAD (5, IA)

CALL MPWRITE (6, A, B, C, D, E)

An example of the format for input or output of MP numbers is

10 ^ 40 x -3.1415926535897932384626433832795028841971,

On input, the exponent �eld is optional, and blanks may appear anywhere, but a comma
must appear at the end of the last line of mantissa digits.

By default, only the �rst 56 mantissa digits of a MP number are output by MPWRITE, so
that the output is contained on a single line. This output precision level can be changed
by the user, either as a default setting or dynamically during execution (see section four).

It should be noted that the Fortran-90 translation modules generate calls to the stan-
dard arithmetic routines of the MPFUN library. If one wishes to utilize the \advanced"
routines, which are intended for precision levels above 1000 digits (see section �ve), contact
the author.

3. Multiprecision Functions

The functions MPINT, MPREAL and MPCMPL were mentioned in the previous section in
the context of MP constants. These three functions are actually de�ned for all numeric

4

argument types, ordinary and MP. The result is MP integer, MP real or MP complex,
respectively, no matter what the type of the argument. Thus one may use MPREAL (A) to
convert the ordinary oating point variable A to MP real.

The corresponding Fortran type conversion functions INT, REAL, DBLE, CMPLX, and
DCMPLX have also been extended to accept MP arguments. The result, in accordance with
Fortran language conventions, is of type default integer, real, double precision, complex
and double complex, respectively. Note that REAL (IA), where IA is MP integer, is not of
type MP real | if that is required, then MPREAL should be used instead.

Many of the other common Fortran intrinsics have been extended to accept MP ar-
guments, and they return true MP values as appropriate. A complete list of the Fortran
intrinsic functions that have been extended to MP is given in Table 1. In this table, the ab-
breviations I, R, D, C, DC, MPI, MPR, MPC denote default integer, real, double precision,
double complex, MP integer, MP real and MP complex, respectively.

Some additional MP functions and subroutines that users may �nd useful are demon-
strated in the following examples. Here N is an ordinary integer variable, and A, B and C

are MP real.

A = MPRANF ()

B = MPNRTF (A, N)

CALL MPCSSNF (A, B, C)

CALL MPCSSHF (A, B, C)

These calls which produce a pseudorandom number in (0; 1), the N-th root of A, both
the cos and sin of A, and both the cosh and sinh of A, respectively. The above call to
MPNRTF is equivalent to, but signi�cantly faster than, the expression A ** (MPREAL (1) /

N). This is because the latter expression requires log and exp calculations, whereas MPNRTF
uses an e�cient Newton iteration scheme. Similarly, the above call to MPCSSNF executes
faster than B = COS (A) and C = SIN (A), although the results are the same. A similar
comment applies to MPCSSHF.

4. Global Variables

There are a number of Fortran-90 global variables de�ned in the MP translation modules
and in the MPFUN package. These variables, which are listed in Table 2, can be accessed
by any user subprogram that includes a USE MPMODULE statement. The entries in the
column labeled \Dynam. change" indicates whether the values of these variables may be
dynamically changed by the user during execution of the program.

The �rst three global variables listed in Table 2 are set by the user in PARAMETER

statements at the beginning of the �le containing the MP translation modules. MPIPL

is the initial precision level, in digits, and is often the only parameter that needs to be
changed. MPIOU, the initial output precision level, is ordinarily set to 56, although it may
be set to as high as MPIPL if desired. The parameter MPIEP, the initial MP \epsilon" level,
is typically set to 10 - MPIPL or so.

5

Function Arg. Arg. Function Arg. Arg.
Name 1 2 Result Name 1 2 Result
ABS MPI MPI INT MPI I

MPR MPR MPR I
MPC MPR MPC I

ACOS MPR MPR LOG MPR MPR
AIMAG MPC MPR MPC MPC
AINT MPR MPR LOG10 MPR MPR
ANINT MPR MPR MAX MPI MPI MPI
ASIN MPR MPR MPR MPR MPR
ATAN MPR MPR MIN MPI MPI MPI
ATAN2 MPR MPR MPR MPR MPR MPR
CMPLX MPI MPI C MOD MPI MPI MPI

MPR MPR C MPR MPR MPR
MPC C NINT MPR MPI

CONJG MPC MPC REAL MPI R
COS MPR MPR MPR R

MPC MPC MPC R
COSH MPR MPR SIGN MPI MPI MPI
DBLE MPI D MPR MPR MPR

MPR D SIN MPR MPR
MPC D MPC MPC

DCMPLX MPI MPI DC SINH MPR MPR
MPR MPR DC SQRT MPR MPR
MPC DC MPC MPC

EXP MPR MPR TAN MPR MPR
MPC MPC TANH MPR MPR

Table 1: MP Extensions of Fortran Intrinsic Functions

6

Variable Dynam. Initial
Name Type Change Value Description

MPIPL Integer No User sets Initial (and maximum) precision, in digits.
MPIOU Integer No User sets Initial output precision, in digits.
MPIEP Integer No User sets log

10
of initial MP epsilon.

MPWDS Integer No See text Initial (and maximum) precision, in words.
MPOUD Integer Yes MPIOU Current output precision, in digits.
MPEPS MP real Yes 10MPIEP Current MP epsilon value.
MPL02 MP real No loge 2
MPL10 MP real No log

e
10

MPPIC MP real No �

MPNW Integer Yes MPWDS Current precision level, in words.
MPIDB Integer Yes 0 MPFUN debug level.
MPLDB Integer Yes 6 Logical unit for debug output.
MPNDB Integer Yes 22 No. of words in debug output.
MPIER Integer Yes 0 MPFUN error indicator.
MPMCR Integer Yes 7 Cross-over point for advanced routines.
MPIRD Integer Yes 1 MPFUN rounding option.
MPKER Integer Yes 0 Array of error options.

Table 2: Global Variables

The call to MPINIT at the start of the user's main program sets initial values for the
next six variables in the list. The �nal eight global variables in Table 2 are used in the
MPFUN package and assume the values as shown. See [4] for additional details on the
de�nition and usage of these variables.

As noted in Table 2, MPNW is the current numeric precision level, measured in machine
words. On IEEE and most other systems, the approximate corresponding number of digits
is given by (MPNW� 1) � 24 log

10
2. If one wishes to perform the same computation with

a variety of precision levels without recompiling the translation modules, or if one needs
to dynamically change the working precision level during the course of a calculation, this
may be done by directly modifying the parameter MPNW in the user program, as in

MPNW = 127

But be careful not to change MPNW to a value larger than MPWDS, the initial precision level
in words; otherwise array overwrite errors will occur. MPWDS is computed from MPIPL, the
user-de�ned initial precision level in digits, using the expression int[MPIPL=(24 log

10
2)+1],

7

where int denotes greatest integer. Because of possible numerical di�erences, it is recom-
mended that users reference the system's value of MPWDS, rather than attempt to recalcu-
late this value using the above formula. On Cray vector systems, the constant 24 log

10
2 =

7:22472 � � � in the above discussion should be replaced by 22 log
10
2 = 6:62266 � � �.

With regards to the MP epsilon MPEPS, quotes should be used when changing the value
of this variable, as in

MPEPS = '1E-500'

The quotes here insure that the constant is converted with full multiple precision. Without
quotes, the constant will not be accurately converted, and in fact a constant of such a small
size would result in an underow condition on IEEE arithmetic systems.

5. The Fortran-90 MPFUN Package

The new Fortran-90 translation modules, like the older TRANSMP program, generate
calls to the MPFUN library, which contains all of the subroutines that perform MP oper-
ations. With the advent of Fortran-90, the MPFUN library has also been updated to use
some of the advanced features of the this language. Among the changes in the new MPFUN
package are the elimination of common blocks and the dynamic allocation of scratch space.
Thus the user never needs to worry about \insu�cient scratch space" error messages.

One important algorithmic improvement introduced in the Fortran-90 version of the
MPFUN library is the utilization of a faster scheme for multiple precision division, due
to David M. Smith. The gist of this scheme is that it is not necessary to normalize the
individual machine words of the trial quotient at every step of the division process. Instead,
the normalization operation may be performed only occasionally. See [8] for details. On
an IBM RS6000/590 workstation, this new division routine is as much as four times faster
than the previous routine. One of the author's applications runs nearly twice as fast
as a result, although a savings of 10% is more typical since relatively few applications
are divide intensive. This improvement only a�ects the standard division routine. The
advanced division routine, which is used for precision levels about about 1000 digits, is not
a�ected.

Another algorithmic change is the utilization of an improved fast Fourier transform
(FFT) algorithm [2], which is used by the advanced MP multiplication routine of MPFUN.
This new FFT algorithm, which is variously called the \factored" or \four-step" FFT,
exhibits signi�cantly improved performance on computers that employ cache memory sys-
tems.

That this new FFT scheme is signi�cantly more e�cient on modern RISC systems can
be seen from Table 3, which compares the performance of the new Fortran-90 MPFUN
with the author's previous Fortran-77 MPFUN. These timings were performed on an IBM
RS6000/590 workstation and compare the run time required to compute the constant �
to the speci�ed precision levels (excluding binary to decimal conversion). The numbers
of digits shown in the second column correspond to 2m numbers of words, which are
convenient precision levels for the FFT-based multiplication routine. Note that the new

8

Prec. Level CPU Time
m (Digits) Old MPFUN New MPFUN
4 115 0.0039 0.0035
5 231 0.0077 0.0068
6 462 0.0183 0.0160
7 924 0.0494 0.0440
8 1849 0.1250 0.0840
9 3699 0.3090 0.2640
10 7398 0.6670 0.6150
11 14796 1.4610 1.3900
12 29592 3.2860 3.1600
13 59184 13.3900 7.3500
14 118369 55.1200 16.7700
15 236739 150.3900 37.0400
16 473479 393.6800 83.4100

Table 3: Time to Compute � on an IBM RS6000/590 Workstation

MPFUN package is up to 4.8 times faster than the old on this computation, even though
the FFT routine only constitutes part of the operations being performed.

A third algorithmic change introduced in the Fortran-90 MPFUN package is the substi-
tution of the author's PSLQ integer-relation �nding algorithm [6, 1] for the HJLS algorithm
[7] that was used in subroutine MPINRL of the Fortran-77 MPFUN. The PSLQ algorithm
does not exhibit the catastrophic numerical instabilities that are a characteristic of the
HJLS algorithm. With PSLQ, integer relations can be reliably detected when the preci-
sion level is set to only slightly higher than that of the input data.

One addition to the Fortran-90 MPFUN package is a routine to perform binary to deci-
mal string conversion for extra-high precision arguments. This routine, named MPOUTX,
employs a divide-and-conquer scheme, which together with the extra-high precision multi-
plication and division routines, permits rapid conversion of MP numbers whose precision
ranges from roughly 1000 digits to millions of digits. MPOUTX uses the same calling se-
quence as the existing routine MPOUTC, which su�ces for more modest precision levels.
Extra scratch space is required for MPOUTX, but this space is automatically allocated by
the routine when required.

6. An Application of the Fortran-90 Multiprecision System

In April 1993, Enrico Au-Yeung, an undergraduate at the University of Waterloo,
brought to the attention of the author's colleague Jonathan Borwein the curious fact that

1X
k=1

�
1 +

1

2
+ � � �+

1

k

�2
k�2 = 4:59987 � � � �

17

4
�(4) =

17�4

360

9

based on a computation to 500,000 terms. Borwein's reaction was to compute the value of
this constant to a higher level of precision in order to dispel this conjecture. Surprisingly,
his computation to 30 digits a�rmed it. The present author then computed this constant
to 100 decimal digits, and the above equality was still a�rmed.

Intrigued by this result, the author developed computer programs, using the software
described in this paper, to compute sums of this sort to high accuracy and to test if the
numerical values satisfy simple formulas involving basic mathematical constants. Numer-
ous experimental identities of this sort have now been obtained, and some of these have
subsequently been established by rigorous proof. See [1] for details.

References

[1] D. H. Bailey, J. M. Borwein and R. Girgensohn, \Experimental Evaluation of Euler
Sums," Experimental Mathematics vol. 3, no. 1 (1994), pg. 17-30.

[2] D. H. Bailey, \FFTs in External or HierarchicalMemory," Journal of Supercomputing,
vol. 4, no. 1 (March 1990), p. 23{35.

[3] D. H. Bailey, \Multiprecision Translation and Execution of Fortran Programs," ACM
Transactions on Mathematical Software, vol. 19, no. 3, Sept. 1993, p. 288{319.

[4] D. H. Bailey, \A Portable High Performance Multiprecision Package," NASA Ames
RNR Technical Report RNR-90-022.

[5] R. P. Brent, \A Fortran Multiple Precision Arithmetic Package," ACM Transactions

on Mathematical Software, vol. 4 (1978), p. 57{70.

[6] H. R. P. Ferguson and D. H. Bailey, \A Polynomial Time, Numerically Stable Integer
Relation Algorithm," NASA Ames RNR Technical Report RNR-91-032.

[7] J. Hastad, B. Just, J. C. Lagarias, and C. Schnorr, \Polynomial Time Algorithms for
Finding Integer Relations Among Real Numbers," SIAM Journal on Computing, vol.
18 (1988), p. 859{881.

[8] D. M. Smith, \A Multiple Precision Division Alogorithm," to appear in Mathematics

of Computation.

10

